

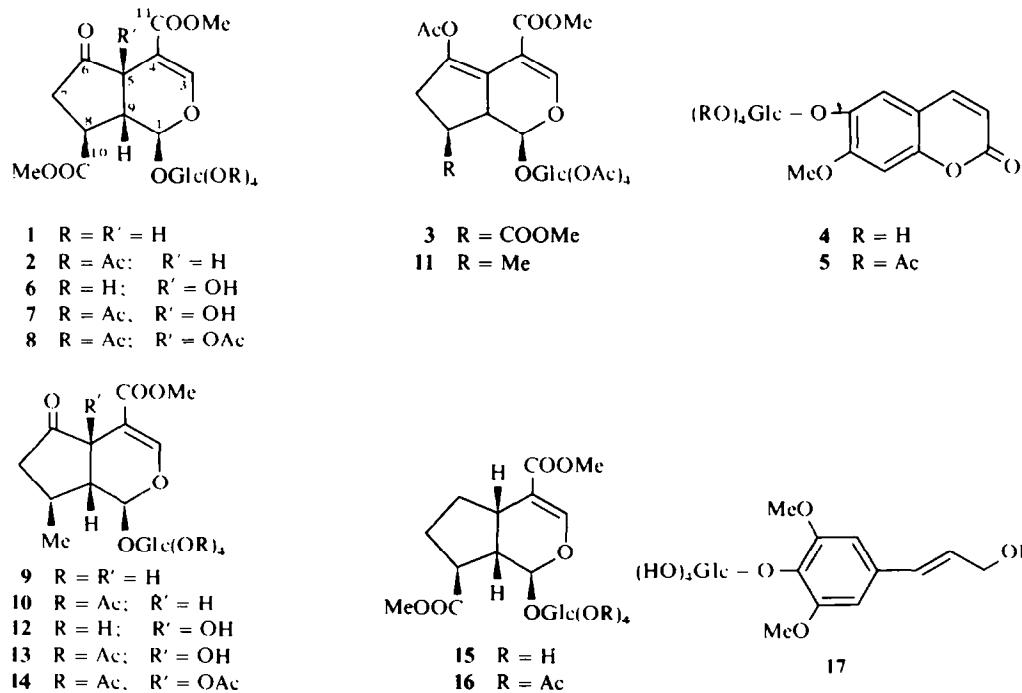
IRIDOID GLUCOSIDES IN *GRISELINIA*, *ARALIDIUM* AND *TORICELLIA*

SØREN ROSENDAL JENSEN and BENT JUHL NIELSEN

Department of Organic Chemistry, The Technical University of Denmark, 2800 Lyngby, Denmark

(Received 11 January 1980)

Key Word Index—*Griselinia*; *Aralidium*; *Toricellia*; Cornales; iridoid glucosides; griselinoside; aralidioside; coumarin glucoside; magnolioside; syringoside; ^{13}C NMR data.


Abstract—From three of five investigated species of *Griselinia*, a new iridoid glucoside, griselinoside, was isolated. It was found to be present also in foliage of *Aralidium pinnatifidum* and *Toricellia angulata*, accompanied in the former by aralidioside, another novel iridoid glucoside. The structures and absolute configurations of the two iridoids were elucidated by NMR spectroscopy and chemical conversions. From *G. littoralis* and *T. angulata* the glucosides magnolioside and syringoside, respectively, were isolated. ^{13}C NMR spectra are given for thirteen iridoid derivatives.

INTRODUCTION

In continuation of our studies on iridoids and other glycosides in the genus *Cornus* [1] and, more broadly, Cornaceae and its allies [2], we present the results of studies on *Griselinia* Forst. f., *Aralidium* Miq., and *Toricellia* DC. All three genera have formerly been included in the Cornaceae proper at one time or another, but are now segregated into monogeneric families [3, 4] with six, one and three species, respectively. The systematic position of *Aralidium* has recently been subjected to a multi-disciplinary investigation concluding its relationship to Cornaceae and its allies (cf. [3]). The present paper gives the chemical details of our part [5] of that work.

RESULTS

Griselinia. In *G. littoralis* Raoul, *G. lucida* Forst. and *G. ruscifolia* (Clos) Taub. a new iridoid, griselinoside, was found. Its structure, 1, was deduced by NMR spectroscopy. Thus, in the ^1H NMR spectrum of 1, two methoxycarbonyl groups could be observed, whereas the spectrum of the tetraacetate (2) exhibited a broad doublet (H-5) at unusually low field (δ 3.56), indicating the presence of an oxo group at C-6. The ^{13}C NMR spectrum confirmed the presence of these functionalities and was in accord with structure 1. The structure and absolute configuration of all centres in griselinoside were proved by hydrogenation with Pt/H₂ in acetic acid to give forsythide dimethyl ester (15) of known absolute configuration [6].

Upon acetylation in pyridine-acetic anhydride, **1** gave two acetates: the expected tetraacetate (**2**) and a pentaacetate of the 5,6-enol form (**3**). The structure of **3** was established by NMR and UV as well as its conversion into the tetraacetate (**2**) by the treatment with *p*-toluenesulfonic acid in methanol. Acetylation of **1** in ethyl acetate with perchloric acid as a catalyst yielded **3** as the main product. In addition to **1**, magnolioside (**4**) [7] was isolated from *G. littoralis*. Its identity was ascertained by NMR and comparison of the acetate (**5**) with an authentic sample prepared by methylation [8] and acetylation of aesculin.

No iridoids could be detected in *G. alata* Ball or *G. jodinifolia* (Griseb.) Taub.

Aralidium pinnatifidum (leaves or bark) contained griselinoside (**1**), accompanied by another iridoid glucoside, aralidioside (**6**), as a minor component. The ¹H NMR spectrum of **6** revealed the presence of two methoxycarbonyl groups, and the signal from H-3 (7.91, s) indicated the presence of a hydroxy group at C-5. The ¹³C NMR spectrum was similar to that of **1**, showing the same functionalities, apart from a singlet at 74.0 at the expense of a doublet at high field in **1**. Again, the low-field position (157.5 vs 154.5 in **1**) of the signal assigned to C-3, was in keeping with a 5-OH substituent. Acetylation of **6** gave rise to a tetraacetate (**7**), and, on prolonged reaction, to a pentaacetate (**8**), all in accord with the proposed structure. Conversion of **3** to **8** could be achieved by oxidation with *m*-chloroperbenzoic acid in chloroform, presumably by epoxidation of the 5,6-double bond, followed by rearrangement [9]. The reaction was slow (1–2 days), and the epoxide could not be detected in the reaction mixture. Therefore, identical configurations for **1** and **6** at all centres except C-5 was proved.

Acetylation of cornin (**9**) in the presence of an acid catalyst as in the preparation of **3** provided the 5,6-enol pentaacetate (**11**). Treatment of **11** with MCPB as above gave hastatoside pentaacetate (**14**), identical with **14** prepared from hastatoside (**12**). This analogy, together with the almost complete correspondence of the ¹³C NMR data for **6**, **7** and **8** with those of **12**, **13** and **14**, respectively (Table 1) points to the same absolute stereochemistry (5 β -hydroxy) for aralidioside and hastatoside [10].

Toricellia angulata Oliv. var. *intermedia* (Harms) Hu contained griselinoside (**1**) and trace amounts of aralidioside (**6**). Another constituent, the phenolic glucoside, syringoside (**17**), was identified by its physical data [11].

Griselinoside (**1**) is a constituent also of some species of *Verbena* [12, 13].

EXPERIMENTAL

General procedures were as earlier described [8, 14]. ¹H NMR spectra were run at 90 MHz (glucosides: D₂O-DSS; acetates: CDCl₃-TMS).

Griselinia littoralis. Dry powdered leaf material (100 g) was extracted with EtOAc for 5 hr in a Soxhlet. The extract was evapd, H₂O (100 ml) was added, and the suspension extracted with CHCl₃ (100 ml) and Et₂O (2 \times 200 ml). The conc aq. soln was eluted with H₂O (500 ml) from a column of Al₂O₃ (neutral, 50 g) yielding a residue (1.42 g) of crude glycosides. Upon addition of a few ml of H₂O, magnolioside (**4**, 60 mg) crystallized; mp 223–225° (loss of H₂O at ca 145°) (lit. [7]: mp 227°). Tetraacetate (**5**), mp 174.5–176° (lit. [7]: 176°); mmp with

specimen prepared by successive methylation [8] and acetylation of aesculin showed no depression; ¹H NMR: δ 7.59 (*d*, *J* = 9.5 Hz, H-4), 7.25 (*s*, H-5), 6.83 (*s*, H-8), 6.30 (*d*, *J* = 9.5 Hz, H-3), 3.91 (*s*, OMe), 2.13–2.05 (4 \times OAc). Chromatography of the mother liquid from above (Si gel; CHCl₃-MeOH, 8:1 to 4:1) gave griselinoside (**1**, 480 mg) and a mixture of **1** and **4**. Further separation on Sephadex G-15 yielded **4** (33 mg, total 0.09%) and **1** (180 mg, total 0.7%). Passage through act. carbon gave an analytical specimen of **1** as a foam, $[\alpha]_D^{21}$ = 117° (*c* 0.3; MeOH); $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log *e*): 235 (4.0); ¹H NMR: δ 7.66 (*br. s*, H-3), 5.36 (*d*, *J*_{1,9} = 7.0 Hz, H-1), 4.87 (*d*, H-1'), 3.80 and 3.78 (*s*, 2 \times OMe), 3.6 (H-5), 2.96 (*m*, H-9). (Found: C, 47.57; H, 5.76. C₁₈H₂₄O₁₂·H₂O requires: C, 48.00; H, 5.82%).

Acetylation (Py-Ac₂O, 20°) of **1** (740 mg) for 18 hr gave rise to a mixture (850 mg) from which **2** (390 mg) could be crystallized. mp (EtOH) 188.5–189°; $[\alpha]_D^{21}$ = 122° (*c* 0.3; CHCl₃); $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log *e*): 233 (3.97); ¹H NMR: δ 7.46 (*d*, *J*_{3,5} = 1, 5 Hz, H-3), 5.09 (*d*, *J*_{1,9} = 6.5 Hz, H-1), 3.81 and 3.78 (*s*, 2 \times OMe), 3.56 (*br. d*, *J*_{5,9} = 8.0 Hz, H-5), *ca* 2.8 (*m*, H-9), 2.12–2.00 (4 \times OAc). (Found: C, 51.96; H, 5.31. C₂₆H₃₂O₁₆ requires: C, 52.00; H, 5.37%). Prep. TLC (Et₂O) of the mother liquid gave griselinoside 5,6-enol pentaacetate (**3**, 80 mg), mp (EtOH) 174–176°; $[\alpha]_D^{24}$ 9.4 (*c* 0.6, CHCl₃); $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log *e*): 211 (4.05), 267 (4.08); ¹H NMR: δ 7.45 (*br. s*, H-3), 5.20 (*d*, *J*_{1,9} = 8 Hz, H-1), 3.78 and 3.75 (*s*, 2 \times OMe), 2.19–2.04 (4 \times OAc). (Found: C, 52.36; H, 5.46. C₂₈H₃₄O₁₇ requires: C, 52.17; H, 5.63%).

Hydrogenation of griselinoside (**1**, 760 mg) was performed in HOAc (50 ml) with Pt (160 mg) as the catalyst, for 2 hr. The product mixture was separated into 3 fractions: A (99 mg, C-6 epimeric alcohols), B (97 mg, **1**) and C (295 mg, forsythide dimethyl ester, **15**). Acetylation of **15** (61 mg) gave **16** (52 mg), mp (EtOH) 146–148°; (lit. [6]: mp 143–144°); ¹H NMR: δ 7.36 (*d*, *J*_{3,5} = 1.5 Hz, H-3), 5.26 (*d*, *J*_{1,9} = 3 Hz, H-1), 3.71 (*s*, 2 \times OMe) 2.9 (*m*, H-5), 2.6 (*m*, H-9), 2.11–1.91 (4 \times OAc). (Found: C, 53.13; H, 5.86. Calc. for C₂₆H₃₄O₁₅: C, 53.24; H, 5.84%). Identical with an authentic sample (mp, mmp, ¹H NMR). Dry foliage of *G. lucida* (13 g) and *G. ruscifolia* (24 g) were extracted as above to give 25 mg (0.2%) and 74 mg (0.3%) of **1**, respectively.

Aralidium pinnatifidum. Ground, dry leaves (48 g) were extracted as above to give 1.7 g of crude glycosides. Chromatography (Si gel; CHCl₃-MeOH, 3:1) yielded **1** (750 mg, 1.5%), and a mixture (143 mg) from which aralidioside (**6**, 100 mg, 0.2%) was isolated as a foam, $[\alpha]_D^{24}$ = 211° (*c* 0.3; MeOH); $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log *e*): 232 (3.99); ¹H NMR: δ 7.91 (*s*, H-3), 6.11 (*br. s*, H-1), 3.80 and 3.72 (*s*, 2 \times OMe).

Acetylation of **6** for 2 hr gave the tetraacetate **7**, mp 134–135°, $[\alpha]_D^{23}$ = 198° (*c* 0.4; MeOH); $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log *e*): 228 (3.91); ¹H NMR: δ 7.63 (*s*, H-3), 5.87 (*d*, *J*_{1,9} = 1.0 Hz, H-1), 3.96 (5-OH), 3.80 and 3.74 (*s*, 2 \times OMe), 3.0–2.7 (4H, H-7, 8, 9), 2.11–1.96 (4 \times OAc). (Found: C, 50.66; H, 5.23%). Acetylation for 2 days provided the pentaacetate **8**, mp 188–190°; $[\alpha]_D^{25}$ = 232° (*c* 0.5, MeOH); $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log *e*): 231 (3.96); ¹H NMR: δ 7.74 (*s*, H-3), 5.89 (*d*, *J*_{1,9} = 1.0 Hz, H-1), 3.80 and 3.74 (*s*, 2 \times OMe), 3.1–2.5 (4H, H-7, 8, 9), 2.13–1.96 (4 \times OAc). (Found: C, 51.10; H, 5.22. C₂₈H₃₄O₁₈ requires: C, 51.06; H, 5.20%).

Oxidation of **3** (221 mg) was performed in CHCl₃ (2 ml) with MCPB (66 mg, 1.1 eq) for 2 days. Washing with NaHCO₃ soln followed by prep. TLC (Et₂O) gave **8** (138 mg) as the sole product. This sample was indistinguishable from **8** prepared by acetylation of **6**. Bark of *A. pinnatifidum* contained 0.8% of **1** and 0.2% of **6**.

Toricellia angulata foliage (dry, 62 g) was extracted as above to give 0.31 g of crude glycosides. Prep. TLC gave **1** (140 mg, 0.2%) and trace amounts of **6** and **17**. From 42 g of twigs were extracted 0.56 g crude glycosides, yielding 320 mg **1** (0.7%), a trace of **6**, and

Table 1. ^{13}C NMR spectral data for iridoids and acetates (22.6 MHz)*

	C-1	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10	C-11	OMe	C-1'
1	96.9 <i>d</i> (170)	154.6 <i>d</i> (195)	104.0 <i>s</i>	44.0 <i>d</i> (138)	215.5 <i>s</i>	37.9 <i>t</i> (134)	39.8 <i>d</i> (134)	40.7 <i>d</i> (141)	176.3 <i>s</i>	169.2 <i>s</i>	53.9 52.9	100.3 <i>d</i> (163)
2	95.5 <i>d</i> (168)	151.7 <i>d</i> (194)	104.8 <i>s</i>	43.2 <i>d</i> (138)	209.3 <i>s</i>	37.4 <i>t</i> (132)	38.8 <i>d</i> (137)	40.2 <i>d</i> (141)	173.5 <i>s</i>	166.1 <i>s</i>	52.6 51.7	97.2 <i>d</i> (164)
3	101.4	153.9	105.4	110.9	141.0	41.6	36.7	46.2	173.0	164.5	52.1 51.5	96.4
6	95.3 <i>d</i> (178)	157.5 <i>d</i> (195)	105.4 <i>s</i>	74.0 <i>s</i>	212.0 <i>s</i>	—†	36.2 <i>d</i> (136)	47.1 <i>d</i> (139)	175.4 <i>s</i>	167.9 <i>s</i>	53.9 52.8	100.2 <i>d</i> (162)
7	93.8 <i>d</i> (177)	153.2 <i>d</i> (192)	107.6 <i>s</i>	73.0 <i>s</i>	206.8 <i>s</i>	34.8 <i>t</i> (135)	35.9 <i>d</i> (135)	47.2 <i>d</i> (138)	172.3 <i>s</i>	165.5 <i>s</i>	52.8 51.9	96.3 <i>d</i> (163)
8	92.7 <i>d</i> (180)	154.9 <i>d</i> (195)	103.3 <i>s</i>	76.8 <i>s</i>	201.3 <i>s</i>	36.1 <i>t</i> (135)	36.6 <i>d</i> (131)	43.9 <i>d</i> (140)	171.8 <i>s</i>	164.2 <i>s</i>	52.8 51.7	95.3 <i>d</i> (163)
9	96.8 <i>d</i> (172)	154.2 <i>d</i> (194)	104.5 <i>s</i>	43.3 <i>d</i> (137)	219.7 <i>s</i>	43.7 <i>t</i> (131)	29.5 <i>d</i> (135)	44.9 <i>d</i> (139)	19.8 <i>q</i> (127)	169.5 <i>s</i>	52.9 <i>d</i> (162)	99.8
10	94.8 <i>d</i> (169)	150.8 <i>d</i> (194)	105.1 <i>s</i>	43.0 <i>d</i> (139)	212.0 <i>s</i>	43.0 <i>t</i> (131)	28.6 <i>d</i> (133)	44.3 <i>d</i> (134)	19.8 <i>q</i> (129)	166.2 <i>s</i>	51.4 <i>d</i> (164)	96.4
11	102.9 <i>d</i> (171)	153.9 <i>d</i> (193)	105.7 <i>s</i>	111.8 <i>s</i>	143.3 <i>s</i>	40.7 <i>t</i> (131)	33.7 <i>d</i> (130)	49.7 <i>d</i> (137)	19.8 <i>q</i> (125)	165.4 <i>s</i>	51.5 <i>d</i> (164)	97.0
12	95.0 <i>d</i> (177)	157.0 <i>d</i> (196)	105.6 <i>s</i>	74.4 <i>s</i>	215.4 <i>s</i>	40.7 <i>t</i> (131)	26.3 <i>d</i> (132)	52.1 <i>d</i> (133)	19.4 <i>q</i> (126)	168.2 <i>s</i>	52.7 <i>d</i> (162)	100.1
13	93.0 <i>d</i> (174)	152.4 <i>d</i> (192)	107.8 <i>s</i>	72.9 <i>s</i>	209.4 <i>s</i>	40.3 <i>d</i> (131)	25.7 <i>d</i> (131)	51.8 <i>q</i> (129)	19.7 <i>s</i>	165.6 <i>s</i>	51.5 <i>d</i> (161)	95.8
14	92.2 <i>d</i> (176)	154.3 <i>d</i> (194)	103.7 <i>s</i>	77.2 <i>s</i>	204.0 <i>s</i>	41.8 <i>t</i> (131)	27.1 <i>d</i>	48.4 <i>d</i> (135)	19.1 <i>q</i> (127)	164.6 <i>s</i>	51.6 <i>d</i> (162)	95.2
16	94.7	150.3	112.0	33.0	30.6	27.6	44.5	44.3	175.1	167.5	52.0 51.2	96.0

*Spectra of glucosides were recorded in D_2O (dioxane), and those of acetates in CDCl_3 (TMS) essentially as earlier reported [14]; the signals arising from the glucosyl moieties had a pattern as expected [14].

†Signal not recorded due to D_2O exchange.

40 mg (0.1%) of **17**; mp (EtOH) 184.5–186°, lit. [11] 189°; $[\alpha]_D^{21} = 24^\circ$ (*c* 0.4, H_2O), lit. [11] –18.5°; ^1H NMR: δ 6.85 (2 H, *s*, arom. H), 6.7–6.2 (2 H, AB-part of ABX_2 -syst.), 5.02 (gluc. H-1), 4.25 (2 H, X_2 -part of ABX_2 -syst.), 3.86 (*s*, 2 \times OMe).

Cornin-5,6-enol pentaacetate (**11**, 180 mg) was prepared by treatment of cornin tetraacetate (**10**, 180 mg) in EtOAc with Ac_2O and a catalytic amount of HClO_4 for 2 hr. followed by work-up and prep. TLC to give **11** (129 mg) as an unstable syrup, $[\alpha]_D^{21} = 23^\circ$ (*c* 0.5; MeOH); $\lambda_{\text{max}}^{\text{MeOH}}$ nm(log ϵ): 214 (4.01), 269 (4.02); ^1H NMR: δ 7.40 (*s*, H-3), 5.20 (*d*, $J_{1,9} = 2.5$ Hz, H-1), 3.74 (*s*, OMe), 2.16–2.02 (4 \times OAc), 1.22 (*d*, $J_{8,10} = 7$ Hz, 10- CH_3). (Found: C, 53.70; H, 5.70. $\text{C}_{27}\text{H}_{34}\text{O}_{15}$ requires: C, 54.18; H, 5.72%).

Oxidation of **11** (60 mg) essentially as for **3** gave hastatoside pentaacetate (**14**, 27 mg) as a syrup, identical with a sample prepared by acetylation (Py-Ac₂O, 4 days) of hastatoside (**12**) isolated from *Verbena hastata* [10]. $[\alpha]_D^{24} = 216^\circ$ (*c* 1.2, MeOH); $\lambda_{\text{max}}^{\text{MeOH}}$ nm(log ϵ): 229 (3.8). (Found: C, 53.17; H, 5.94. $\text{C}_{27}\text{H}_{34}\text{O}_{16}$ requires: C, 52.77; H, 5.57%). ^1H NMR: δ 7.65 (*s*, H-3), 5.67 (*d*, $J_{1,9} = 1.5$ Hz, H-1), 3.74 (*s*, OMe), 3.11 (*dd*, $J_{1,9} = 1.5$, $J_{8,9} = 11$ Hz, H-9), 2.12–1.96 (4 \times OAc), 1.24 (*d*, $J_{8,10} = 7$ Hz, 10-Me).

Acknowledgements—We thank the following persons for collecting and authenticating the plant materials: Professor W. R. Phillipson, Christchurch, New Zealand, for generous quantities of *Griselinia littoralis* and *G. lucida*; Dr. Otto Zöllner, Quilpué, Chile for *G. alata* and *G. jodinofolia*; Dr. K. Rahn, The University of Copenhagen, Denmark for *G. ruscifolia*; Dr. B. Stone, The University of Malaya, Malaysia for large quantities of *Aralidium pinnatifidum*; and the staff of The Institute of Botanical Research Kunming, Yunnan, China, for *Toricellia angulata*. We are grateful to Professor Hsing Chi-yi, Beijing University, China, for mediating contact, and to Professor H. Inouye, The University of Kyoto, Japan, for a sample of forsythide dimethyl ester acetate. We thank the Danish Natural Science Research Council for access to ^{13}C NMR facilities.

REFERENCES

1. Jensen, S. R., Kjær, A. and Nielsen, B. J. (1975) *Biochem. Syst. Ecol.* **3**, 75.
2. Bate-Smith, E. C., Ferguson, I. K., Hutson, K., Jensen, S. R., Nielsen, B. J. and Swain, T. (1975) *Biochem. Syst. Ecol.* **3**, 79.

3. Phillipson, W. R. and Stone, B. C. (1980) *Taxon* **29**, 391.
4. Airy Shaw, H. K. (1973) *Willis' Dictionary of Flowering Plants and Ferns*, 8th edn. Cambridge University Press.
5. Jensen, S. R. and Nielsen, B. J. (1980) *Taxon* **29**, 409.
6. Inouye, H. and Nishioka, T. (1973) *Chem. Pharm. Bull.* **21**, 497.
7. Plouvier, V. (1968) *C.R. Acad. Sci. Ser. D* **266**, 1526.
8. Jensen, S. R. and Nielsen, B. J. (1976) *Phytochemistry* **15**, 221.
9. Williamson, K. L., Coburn, J. I. and Herr, M. F. (1967) *J. Org. Chem.* **32**, 3934.
10. Rimpler, H. and Schäfer, B. (1979) *Z. Naturforsch. Teil C* **34**, 311.
11. Plouvier, V. (1962) *C.R. Acad. Sci. Ser. D* **254**, 4196.
12. Damtoft, S., Jensen, S. R. and Nielsen, B. J. (1979) *Taxon* **28**, 525.
13. Milz, S. and Rimpler, H. (1979) *Z. Naturforsch. Teil C* **34**, 319.
14. Bock, K., Jensen, S. R. and Nielsen, B. J. (1976) *Acta Chem. Scand. Ser. B* **30**, 743.